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1 INTRODUCTION

In this report various forms of the Hamiltonian for particle motion in an accelerator will be derived.
Many of these forms will be used as a section in a forthcoming Handbook of Accelerator Physics
and Engineering, edited by Alex Chao and Maury Tigner. Derivations of many of these formulas
can be found elsewhere, for example in studies of nonlinear dynamics [1, 2, 3, 4, 5, 6, 7].

Except where noted, the treatment will apply generally to linear and circular accelerators,
storage rings, and beamlines. The generic term accelerator will be used to refer to any of these
devices. We will use the usual accelerator coordinate system [1], which will be introduced first
along with a list of handy formulas. We then start from the general Hamiltonian for a particle
in an electromagnetic field, using the accelerator coordinate system, with time ¢ as independent
variable. We switch to a form more convenient for most purposes using the distance s along the
reference orbit as independent variable.

In section 2, formulas will be derived for the vector potentials that describe the various lattice
components. In sections 3, 4, and 5, special forms of the Hamiltonian will be derived for transverse
horizontal and vertical motion, for longitudinal motion, and for synchrobetatron coupling of hori-
zontal and longitudinal motions. Hamiltonians will be expanded to fourth order in the variables.

1.1 Accelerator Coordinate System

We will use the standard accelerator coordinate system shown in Fig. 1.1. It is based on a specified
reference orbit. The coordinates are:

z — the distance measured horizontally outward from the reference orbit,
y — the distance measured vertically, and
s — the distance measured along the reference orbit from some reference point.

The reference orbit lies in the x, s-plane. It is traced out by a particle with suitable initial con-
ditions in the ideal accelerator lattice as designed. The kinetic momentum Symc on the reference
orbit will be denoted by py. Magnet errors, misalignments, etc., which can be introduced later
may make the reference orbit no longer an actual particle orbit. In a linear accelerator or straight
beamline, the reference orbit is a straight line down the center of the focusing magnets and accel-
erating gaps. There are no transverse fields on the reference orbit. The reference momentum py(s)
is a function of position along the orbit; for a beamline it is constant. In a circular accelerator or
storage ring or a beamline with bends, the reference orbit will consist of arcs and straight sections.
In a circular accelerator or storage ring, the reference orbit is closed but not necessarily a circle.
The reference momentum pg(t) is a function of time or may be constant. The radius p is the local
radius of curvature of the reference orbit. It is infinite except in a bend. In a bend, we require

po =eBp, (1.1)

where B is the magnetic field at the reference orbit and must be vertical.

1.2 Handy Formulas
We will make use of some handy formulas in accelerator coordinates:

dx
ds

dy da

b4
. =2=_2 - % 9 §(14+p7 " 1.2
' s 0, I p,dr xdr +ydy +8(1+ p~ z)ds, (1.2)
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where X, y,§ are unit vectors in the direction of increase of the corresponding coordinates.

1.3 The Complete Hamiltonians[1, 2]

The Hamiltonian for a particle of charge e, mass m, moving in an electromagnetic field described
by electromagnetic potentials Agp, ¢ is

Hy(2,pa; Y, y; 8,P53t) = ep+ T, (1.7)
where
Dy A2 1/2
T = c|m2P+ (py — edy)® + (py — eAy)2 + (ﬁ) ] (1.8)
= ymc (1.9)

is the kinetic energy (including rest energy) of the particle. The canonical vector potentials are
defined by

=
8

|
>

* Aema
}A’ ) Aem ) (1.10)
A, = (1 + p_lx) $-Acnm -

For a circular accelerator, all quantities are periodic functions of s.

Figure 1.1: Coordinates Relative to Reference Orbit.



With s as the independent variable, the Hamiltonian is obtained by solving Eq. (1.7) for p;
with H; set equal to £. The Hamiltonian is the negative of the momentum canonically conjugate
to the independent variable:

Hs(l';pw,y;py;t; _E’ S) = —DPs = —GAS - (1 + P_lx) PS ) (111)
where —F is the momentum conjugate to the coordinate ¢t and

2

P, = [(E‘e¢) <pm—eAm)2—(py—eAy)Q—m%Qr/? (1.12)

C
= PBsyme (1.13)

is the kinetic momentum in the s direction.

2 THE ELECTROMAGNETIC POTENTIALS FOR LATTICE
ELEMENTS

We next work out the canonical potentials for magnetic lattice elements, expanded to fourth order
in z,y. We will choose a gauge in which A, = 0 and will keep as few terms as possible in A;. Other
choices of gauge are possible.

The following derivations include the magnet edge effects. Edge corrections depend on the
details of the edge design. In each case, a typical edge design has been assumed, as explained in
each of the following subsections. For other edge designs, the formulas derived below should give
approximate values of the coefficients, particularly if the edges are thin, but they do not include
any terms that violate the assumed symmetries.

We will specify the position, length, and edge shape for a bend, quad, sextupole, etc., by giving
the field or its gradient as a function of s along the reference orbit. In the subsections below for
each case, we derive from this function the magnetic field in the magnet gap and from that the
potential to be used in the Hamiltonian.

As the mathematically sophisticated reader will recognize, because the magnetic potential 1
satisfies Laplace’s equation, the appropriate (Dirichlet) boundary condition is to specify 1 on the
magnet surface or some other closed surface surrounding the region of interest. [8] However this
requires specifying the details of the magnet design and probably requires a numerical solution
of Laplace’s equation. To avoid this and to get approximate analytic formulas for the desired
potentials, we have chosen to specify the field in the neighborhood of the reference orbit (essentially
a Cauchy condition) and to develop the solution from there in a power series in x,y. Such a series
will not in general converge unless the field we start with in the neighborhood of the reference orbit
is part of the exact solution of Laplace’s equation for some magnet design. However, we expect
that if the field we start with is a reasonable approximation to the true field along the reference
orbit, then the first few terms of the series should be a reasonable approximation to the true field.
A similar remark applies to all the derivations in this section.

2.1 Drift

For a drift, there is no magnetic field:



2.2 Bend

We consider a bend with a uniform vertical field B in the interior. We assume a straight edge
designed so that there is no field parallel to the edge and no dependence of the fields on the
coordinate parallel to the edge. If the field is produced by magnetic pole pieces, the pole face near
the edge is traced out by a moving straight line that remains horizontal and parallel to the edge.
We will further assume that the magnet is more than twice as long as the edge thickness, so that
the edge fields from the two ends do not overlap. We may then consider each edge separately.

Edge Coordinates. Near an edge, we choose a rectangular coordinate system X,y,z, with z
measured perpendicular to the magnet edge, and X, parallel to the edge as in Fig. 2.1, which also
shows the reference orbit and the relations between accelerator coordinates s,z and the coordinates
X, z. On the median plane, the field is vertical and depends only on the coordinate z:

B=9B(z). (2.2)

The function B(z) specifies the form of the edge field.
Because there is no magnet current in the magnet gap, we have V x B = 0, and we can derive

B from a scalar potential :
B=VyY=VxAq. (2.3)

We need the vector potential to fourth order, so we need v to fourth order and B to third order.
Because of median plane symmetry, only odd terms in y appear in the expansion of :

P(y,2) = B(2)y + ¢3(2)y° +--- . (2.4)

Because V-B =0,
V2 = By + 6y + - =0, (2:5)

from which we get

1
¢3 = _éBzz y (26)
1

% = By-— EBzzgj” e (2.7)

where subscripts z denote derivatives.

Figure 2.1: Edge Coordinates X, z in the median plane.



Equation (2.7) gives the magnetic field
o 1 2 N 1 3
B=y B—§Bzzy 4|+ Z Bzy—ngzzy 4+ (2.8)

We choose a gauge in which the vector potential has only an X component:

0Ax 0Ax

B =gy 2X 00X
ary ZBy

(2.9)

This gives
L[ r? 1 1
Ao, =X [ / B(2")dz' — §Bzy2 + ﬂBmy‘l 4+ (2.10)

Translation from Edge to Accelerator Coordinates. We have now to translate A into
accelerator coordinates. Figure 2.1 shows the relation between the accelerator coordinates and the
edge coordinates. Fortunately the y coordinate (not shown) is the same in both coordinate systems.
A particle is shown at the point (s,z) in accelerator coordinates, (z, X) in edge coordinates. We
define the coordinate z(s) of the point s on the reference orbit and the angle a(s) between the
tangent to the reference orbit at s and the normal to the edge (i.e., the z axis). We see from
Fig. 2.1 that

z = z(s) —rsina(s) . (2.11)
We may now expand
B(z) = B(z(s) —zsina)
1 1
= B—B,zsina+ §Bzz$2 sin? o — EBzzzm?’ sina+--- (2.12)

where B’s without an argument are evaluated at the point s on the reference orbit. Along the
reference orbit, we can see from Fig. 2.1 that

dz

- = 2.1
I cosa , (2.13)
da 1

- = _Z 2.14
dp p dB

where the last equation follows from Bp = constant. Note that Eq. (2.14) can be used to determine
a(s) if « is known at some point, say at the magnet edge. For thin edges, o can usually be treated
as constant. We can now calculate derivatives along the reference orbit:

B = Lz—f = Bz% =B, cosa, (2.16)
B, = B,= Cila , (2.17)
B" = dcil = B,,cos’ a + B spina = B,,cos® a + ilcii:j , (2.18)
B, = B, = B" B'sina (2.19)

cos?a  pcosda’



dB" 2B i B't !
B _ _B,,,cost o+ 222 cos asin n ( anoz)
ds P p
3B"sina  2B'sin’a B’ B?tana
= Buscos’at pcosa  p2cosla  p?cosla Bp (2:20)
B — B — B" 3B" sina n B'(1+2sin’a)  B?sina (2.21)
BT T T o3 peosta p? cos® a Bpcosta’ )

where primes denote derivatives with respect to s and appear in edge corrections.

The Term yB(z). The first term on the right in Eq. (2.10) is awkward to handle in its given
form. We note that it gives the field (2.2):

“ V4
V X Aemi = V x X / B(+)d7 = §B(z) . (2.22)

We therefore seek a formula in accelerator coordinates that gives the field yB(z). According to
formula (1.6), if we choose a gauge in which the new A; has only an s component, we must solve

the equation

1 0 1
Ty Tzagt TP @ Aems

1 0

m&Als = —B(Z) ; (2.23)

where B(z) is given by Eq. (2.12). The solution is

Ay = —Bz + (Bl sina_ B) z? + (Bl sina_ B; Sin20‘> e <B3sin3a _ B sin2a> e

2 2p 3p 6 24 8p
(2.24)

The Remaining Terms. The remainder of Ay, from Eq. (2.10) is, always keeping terms up to
fourth order,

- 1 1
A =X [—EBZ(,z)y2 + ﬁBzzz(z)y‘l] . (2.25)
From Fig. 2.1,
X =%cosa+S§sina. (2.26)

The coefficients in Eq. (2.25) are to be evaluated at the position z of the particle, so we need to
expand them as we did B(z) [Eq. (2.12)], keeping terms up to the appropriate order:

1
B,(z) = B,— B,zsina+ EBzzsz sin? o
1
= B; — Bozsina + §B3ac2 sin o, (2.27)
= Bj. (2.28)

We can now write out A, using Eqgs. (2.25)-(2.28):

B By si Bj sin? B
Ay = (Rcosa+ (1 +p~'z)8sine) <——1y2 4 200G IR B2y 2—Zy4> . (2.29)

2 2 4



Canonical Potential for a Bend. We collect A = A; + Ay to get the canonical magnetic
potential for a bend:

A — §[—B$+<Blsma B>$2_Blsinay2

2 2 2
Bisina Bysin?a 3 Bysin?a Bjsina 9
+ < 30 6 T° + 9 2% Ty
Bs sina  Bysin®a 4 By sin® « B sin® 9 9 DBssina 4
+< 24 g )7 T\ T2 s YR

Bj cosa By sina cos Bssin® acos a B3 cos a
1% [_ 2 2 72 y2 n 4

y] . (2.30)

2 Y 2 Y 1 24

The above formulas for the edge effects have been derived for the right end of the magnet. The
reader may verify that we get the same formulas if we consider the left end of the magnet. Note
that, at both ends, the positive z axis is in the direction of increasing s, and that the angle a(s) is
measured counterclockwise from the positive z axis to the tangent to the reference orbit at s.

Thin Edge Perpendicular to Orbit. Formula (2.30) is vastly simplified in the case of a thin
edge perpendicular to the reference orbit. In that case, we may put a = 0 (neglecting the variation
of « along the orbit in the edge region):

B B
A=3 [—Bz — 2_,,3”2] +% [——yQ + (— + —2) y4] : (2.31)

2.3 Bend with Built-in Gradient

A bending magnet that includes a built-in gradient cannot be treated as in the preceding subsection,
because the field is not uniform in the interior of the magnet. We will assume an edge that is
perpendicular to the reference orbit. Otherwise the treatment becomes quite difficult and depends
sensitively on exactly what assumptions we make about the edge. Such magnets are usually built
along the arc of a circle, but we will assume it is built along the reference orbit, so that we may
use accelerator coordinates from the beginning. The difference is negligible if the edges are not too
thick.
We assume the magnet pole faces are so shaped that in the median plane the field gradient
depends only on s:
B = y[B(s) + G(s)z] . (2.32)

We will derive separately the two parts of the field.
To get the field

Bpo =¥B(s) , (2.33)
we need the potential
Yp1 = B(s)y . (2.34)
Formula (1.4) gives
V2¢B1 = B"y + (2.35)
so we add the next term:
B"y3
YB3 = B(s)y — 6 (2.36)

7



This gives

2B” BI2
V2¢B3:—< +B_>‘Ty+"'7
p p

so we add the next term:

B”y3 1 2B// B/2
= B(s)y — = i
YBa = B(s)y — — = + ¢ ( P + By )Y

Fourth order is as far as we need to go. The field is, if we use Eq. (1.3),

Bg = Vipy
Bny2 BI2 B// B/2 B//
= v |B- i 2 X — |42
yl 5 +<23p+ ’ Ty’ | +X ()’Bp+3p Y
. BI BI BIII
+S [B,y — ?l"y + ?ny — Ty3:|
We use formula (1.6):
- afélBems ABABz - ( 1 aABz 1 61435)
Bs =V X Apem = - _ .
B 7 ABem =X Oy S Oy Ty 1+plz 0Os 1+p~lz Oz

Comparing Eq. (2.40) with Eq. (2.39), we solve for

B B12 BII
A — §|—-Br—— 2 = 4
B ® [ Tt (24Bp + 12p> Y ]

. _BI2 BI 9 BI 9 o III4
+x[—7y +%xy —ﬁ:cy +ﬂy] .

To get the gradient part of the field
Be1 =3G(s)z ,
we proceed as above, starting with the potential

Pa2 = G(s)zy -

Formula (1.4) gives
G G
Vao = 7y+ (G”_F) Ty +---

_ Gy3 G G" 3
Yas = G(s)zy G—p + (6_/)2 ?) xy” .

There are no more fourth-order terms. The field is, if we use Eq. (1.3),

so we add the terms:

Be = Vg
. Gy2 G GII ) R G G” 3
- Y[G“%*(ﬁ‘?)” vx[en (5 - %)
1,.2 1,3
+§[G'a:y—G$y—Gy]
p 6p

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



We use formula (1.6) as above and solve for
G G G G G"
¢ S[z(y )3, T, g )Y

G’ G’ 2y G’ 4]
—l—x[ 5 zy? —l— + 24py . (2.47)

We combine Eqs.(2.41) and (2.47) to get the total canonical magnetic potential:

A = Ap+Ag
G

— a B 2, G o G 3 G 4
= sl—Bm—<%—l—5)x —l—5y —3—pzc +—pxy +

BIQ N BII GII+ G A
24Bp " 12p 24 ' 2402 )Y

BI BI GI 9 BI GI BIII GI 4
B B _& _ & . (24
+X[ 2y+<2p 2)”’ <2p 2p> y+<24+24)y] (248)

Formula (2.48), if we put G = 0, agrees with formula (2.31) in the interior of the magnet, as it
must, but not all the edge terms agree. Because for a thin edge perpendicular to the reference orbit
the reference orbit in the edge is essentially straight, one would expect these two formulas to agree
in this limit. The problem is that the edge terms depend on B’ and B”, and these derivatives go
to infinity in the limit of a thin edge. It therefore makes a difference whether we regard the edge
as straight as in formula (2.31) or as following the curved reference orbit as in formula (2.48), even
in the thin edge limit. This is one of those mathematical oddities where the limiting case is not
equal to the limit approached by the nonlimiting case. Of course in the limit, the differences are
confined to an infinitesimal distance along the reference orbit, but the edge fields are also large, so
they can have an effect on the particle orbit.

2.4 Quadrupole

We specify a quadrupole by giving the field in the neighborhood of the reference orbit:
B =y3Q(s)z +XQ(s)y - (2.49)

The field on the axis of a quadrupole is zero, so the reference orbit is a straight line. The accelerator
coordinate system z,y, s is a rectangular coordinate system. Let us use polar coordinates in the
zy plane:

x=rsinf, y=rcosf . (2.50)

The magnetic scalar potential near the reference orbit that gives the field (2.49) is

Yoz, ,5) = Qs)ay = 5 Q(s)r*sin26 (2.51)

We need the potential to fourth order in r. In order to specify a particular solution of Laplace’s
equation, we will require as a boundary condition that the quadrupole magnet, including the ends,
have quadrupole symmetry and have the proper symmetry in the median plane. The magnetic
scalar potential is then proportional to sin 26:

P(r,0,s) Zz/)n s)r’sin26 . (2.52)

9



Laplace’s equation is

10 0y 10% 0%
V3 = ——p—2L 4 - L 4~
¥ ror or + 72 00? + 0s?
= 2 [#n+(n+2)? —4lgpnyo| r"sin20 =0, (2.53)
n
which gives
n
=——2>2 2.54
Yni2 == — g (2:54)
or conversely
Yo = —(n" — 4y . (2.55)
Given ¢, n > 0, Eq. (2.54) gives us ¥n+2,%¥n+4,. ... Conversely, given ¢, n > 2, Eq. (2.55) gives
us ¥n—2,Pp_4, - .., terminating at 1o if n is even. We do not allow n odd, because negative powers

of r misbehave at the origin. The solution therefore begins with 19 = @/2. The sum is over even
powers of r and is therefore a sum of polynomials in z,y. To fourth order it is

QII
¥ =Qs)zy — 5 @y +3y°) . (2.56)
The field is, to third order
1 QII
B—%|Qy- (% +1")| +3 Qo - e +30y?)| +8Q'ay (257)

which can be derived from the vector potential

A=3 [%( 2 2%+ %(x4 — 62%y% — y4)] — fc%xy? : (2.58)

2.5 Skew Quadrupole

We may need the potential for a skew quadrupole, either to represent a small error in a magnet
or misalignment in a quadrupole, or for a lattice element whose purpose is to correct for such
errors. We proceed as above, specifying the skew quadrupole by the field in the neighborhood of
the reference orbit:

B = %Q;(s)z — §Qs(s)y - (2.59)
The resulting scalar potential has the # dependence cos26. If we replace sin 26 in the above
discussion by cos 26, Eq. (2.56) becomes:

o

Q
Y= —y") - 5" =) (260)
The field is, to third order
14 3 14 3 QI 9 9
B=X[st—fﬂv]—y[st—fy]JrS?s(x -y, (2.61)
which can be derived from the vector potential
A i A 3 42
A=3 [sty - %x?’y] +%Q (% - Ty> . (2.62)

10



Check of Quadrupole Formulas. We may check the quadrupole formulas by rotating for-
mula (2.62) through 45°. We put

Tty —z+y Z+9g —Z+

|2>

_ gy = d= = 2.63
t=m V=5 TR T4 (2.63)
Formula (2.62) becomes:
1
A — 3§ %(QQ _EQ) + %(£4 + 2£3g_ 2£g3 _g4)
PN 2 2 .3

+E +§) 75 le” + 327y — 3zy” —y7]. (2.64)

We change the gauge via the function

QI

flz,y,s) = 4—85@4 + 4§3g + 6§2g2 — 4§g3 - g4]. (2.65)

We then verify that formula (2.58), if we identify underlined coordinates with the coordinates in
Eq. (2.58) and @, with @, is given by

A=A-VFf. (2.66)

2.6 Sextupole
We specify a sextupole by the field near the reference orbit:

B— y@(ﬁ — ) + %S(s)zy . (2.67)

The corresponding potential is
]. 3 .
P = ES(S)T sin 36
1
= ES(s)(3x2y —3). (2.68)

This gives the field (2.67) and is already third order, so the next term would be fifth order, and we

may stop here.
The field to third order is

!
B =322 2 4 k(o) +82 (327 ) (2.69)

which is given by the vector potential

A

o 1 5 134 N /( L 5o 1 4)
- + + . 2.
§S (wa 6:6 ) xS 4:1: Y 24y (2.70)

11



2.7 Octupole

We specify an octupole by the field near the reference orbit:
B = §0(s)(3y°z — 23) — %O(s) (3z%y — %) . (2.71)

The corresponding potential is

P = —30(3)7‘4 sin 46
= —0(s)(z®y — zy®) . (2.72)

This gives the field (2.71) and is already fourth order, so we may stop here.
The field to third order is just that given by Eq. (2.71). It is given by the vector potential
1

— _I__ . 2.

2.8 Accelerating Gap

We will specify an accelerating gap by the electric field along the reference orbit:
E =8A(s)V(t), (2.74)

where V' (t) is the gap voltage function, and A(s) is a function whose integral across the gap is 1 and
which describes the field shape through the gap; it is usually taken to be simply A(s) = §(s — Sgap)-
We assume that the gap is formed by two conducting plates with circular holes centered on the
reference orbit. Because of the cylindrical symmetry about the s axis, it will be convenient to use
cylindrical polar coordinates r, 6, s as defined by Eq. (2.50).

Because the light transit time across the gap is small compared with other relevant times, it
is tempting to derive E from a static scalar electric potential ¢. Because the potential jumps by
the gap voltage as we cross the gap, the electric potential cannot be a periodic function of s in a
circular machine, and moreover it does not fall to zero outside the region of the gap. We could
handle that problem, in analogy with our treatment of the magnetic lattice elements, by deriving
the electric field in the gap and then deriving the corresponding vector potential via the relation

0A
E= il (2.75)
However, we will find that all but the main term in our result will correspond to transit time
corrections. It is hence questionable whether we can properly neglect the light transit time across
the gap. We will therefore work directly with the vector potential, related to the electric field by
Eq. (2.75). The field (2.74) on the reference orbit is derived from the vector potential

A= 8A(s)T(t), (2.76)

where
ﬂﬂ:fvwﬁ, (2.77)

and the lower limit of the integral is arbitrary. It is convenient to use the Lorentz gauge so that
the potentials satisfy the wave equation. The Lorentz gauge is defined by
10¢
V-A—-——=0. 2.78
c Ot (278)
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Because the electric potential ¢ vanishes on the reference orbit, it will be zero everywhere, and we
will omit it from our discussion.
The vector potential in cylindrical coordinates may be written:

A =#(0)A.(r,s,t) +0(0)Ag(r, s,t) + 8A4(r, s,1) , (2.79)

where we have indicated coordinate dependences explicitly to exhibit the cylindrical symmetry. We
expand the components in power series in r:

A = Zam(s,t)T”,
n

Ay = Za(;n(s,t)r”,
n

As = Zasn(s,t)r". (2.80)

Because there are no charges or currents in the gap (except those of the beam which are treated
later), the vector potential satisfies the wave equation:

1 0’°A
VIZA- - =0
c? Ot?
= i Z [nzamr — a2+ al " —c” éimrn]
n
) n—2 " .n —2. n
+0 [n agnT — agnT + ag,r" — ¢ “agpT ]
n
+8)° [n2asnr"_2 +all " — c_2iisnr"} ) (2.81)

Dots denote derivatives with respect to ¢. Note that in applying the operator V? [Eq. (2.53)] to A,
we have to differentiate also the unit vectors ¥, 6.
From the ¥ terms in Eq. (2.81) we get

—a” + c_Qéim 2. 2
Arn+2 = (nrt'/l_zﬁ , a;f,n,Q —C Qrp—2 = —(n — ]-)a'rn . (282)
The first of these equations gives us for any coefficient a,,, a coefficient a,,12. The second of these
equations gives us, for any coefficient a,, a coefficient a,,_», unless n = 1. Because n < 0 is not
allowed, we conclude that the series for A, begins with n = 1 and contains terms with all odd
values of n. A similar conclusion applies to Ag. For A,, we have

" —2:
Qs pt2 = W , ;I’n_Q — c_st,n_g = —n’a, . (2.83)
As above, we conclude that the series for As begins with n» = 0 and contains terms with all even
values of n. Had we considered the electric potential ¢, we would have gotten the same result for
the series. Because the term n = 0 would be zero as we saw above, the entire series for ¢ would
vanish.
Because V - E = (), we have

V-A=0= Znamrn_l +apr™ alr™ (2.84)
n
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from which we get

G,

SN
2.
S, (285)

so that A, is determined by A;. By substituting from Egs.(2.83) into Eq. (2.85), we can verify
that Eq. (2.82) holds.
From Eq. (2.76), we have

Arpn4+1 = —

aso = —A(s)T(t) , (2.86)

from which according to the above equations we get A; and A,, which are, to fourth order:

A"T — Ac™®T ,  A"™T —2A"¢2T + Ac*T®

A, = —AT+ 1 r Gl ™, (2.87)
A = A;Tr _ATT _16A'C_2Tr3 , (2.88)

where
T = Cf;TZ : (2.89)

We will set A9 = 0, because we do not expect that the gap will produce an electric field Fy circling
the reference orbit. We note that these equations imply a magnetic field in the gap:

S[AT AT — AciT®

The position vector in the zy plane is
r, =fr=%xx+yy, (2.91)

and the vector potential for an accelerating gap is

t
A — —8A(s) / V(t)dt
0
A"T — Ac—2T AT _9A" 2T 4+ Ac—4T®
18| @) - e (P4
4 64
iz AT A"T— Al 2T (2 + 27)
2 16 Y
(AT AT — Ae2T
+¥y l Sy~ T (z%y + y3)] : (2.92)

The terms in z,y are edge field corrections appropriate to a circular gap perpendicular to the
reference orbit; they are usually neglected. The terms involving derivatives of A integrate to zero
across the gap, so they involve transit time effects. If A approximates a J-function, then its n'®
derivative with respect to s, in an integral across the gap, produces (—1)" times the n'" derivative
of the rest of the integrand.

The terms involving time derivatives of 7' can be evaluated by taking

V(t) = V sinwyt , (2.93)
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where we may neglect the time dependence of V and wrf, because these terms are very small anyway.
We then have

A~

T = ——coswt,
Wrf
_2 . wa
c T = —c—;T, (2.94)
4
cAr® = Sy,
c

For a circular accelerator, the s derivative of = or y is typically v/R times z or y, where v is
the number of betatron oscillations per revolution and 27 R is the circumference. For a harmonic
number h, wyf = hfBc/R, so the terms involving T typically differ from those involving A by
a factor of about (h3/v)".

2.9 Space Charge Potentials

In working out space charge potentials, we will make the standard assumption that the scale lengths
along the reference orbit for changes in the beam intensity and cross section and for changes in the
vacuum chamber are much larger than the cross-sectional dimensions of the beam or the vacuum
chamber. We therefore treat the reference orbit as straight, with a beam and vacuum chamber
uniform in s.

The electromagnetic potentials satisfy the inhomogeneous wave equations:

1 0%A
2 em
\Y Aem - C_2 12 - _MOJb )
10°¢ Pb
2
-7 - _ 2.
V¢ 292 o (2.95)

where the terms on the right involve the charge and current densities of the beam. By our as-
sumption, the operator V? differentiates only the cross-sectional variations of the beam and is of
order L; 2 where L; is a typical transverse dimension of the beam. The time variations are due
to the translation of the longitudinal variations along the beam, so the operator c=20%/0t? is of
order (/L)% where L, is a typical distance for density variations along the beam. Hence we may
neglect the time derivatives in Eqs.(2.95), which are at most of order (L;/L;)? relative to the space
derivatives.

The beam current is due to its longitudinal velocity. We will neglect any transverse motions of
the beam. The current is then

Jb == éﬁcpb - (2.96)
We need to solve the equations

A B pb
—— | Aen = —uo8 =-8- 2.97
<8x2 + 3y2> e poSBcpy Sc p ( )

0 0 Pb
il = B 2.

(3:52 + 8y2> ¢ €0 (2:98)

We now assume that the boundary condition on Aep, is the same as that on ¢, for example that
they both vanish at the vacuum chamber wall, which will be true if the vacuum chamber is a perfect
conductor. If that is so, then we conclude that

Aem =874 (2.99)
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This assumption is often not true, in which case equations (2.97) and (2.98) must be solved sepa-
rately. (See Laslett [9] for details.)

An electron beam may be fully or partially neutralized by stationary positive ions. If the
fractional neutralization is f, i.e., if the ion charge density is —fp,, then the charge density in
Eqg. (2.98), but not the current density, must be reduced by a factor (1 — f). Note that this
assumes that the neutralizing charge distribution is the same as that of the beam, which should
be approximately true if the beam density is not rapidly changing. It is probably not true for a
bunched beam, because the ions will not move rapidly enough to adjust their density to that of
the beam; in this case, the ion density will probably have the distribution of the average beam
density, averaged over a revolution. The electrostatic potential of the ion beam would then have
to be calculated separately and added to the electric potential of the beam.

Let the beam charge density be given by

po = Ah(z,y) (2.100)

where X is the charge per unit length, and h(z,y) is its cross-sectional distribution, normalized
so that its integral over the vacuum chamber cross section is one. The charge density A and the
distribution h(z,y) are slowly varying functions of s and ¢. The solution of Eq. (2.98) for ¢ is

sa) = B0y, (2.101)
where g(z,y) is the solution of
0? 0?
(W + 8—y2> g(z,y) = —4Arh(z,y) . (2.102)

For a uniform charge density in a circular cross section of radius a, centered in a circular perfect
conductor of radius b, we have

1 f 2 2 < g2
_ Pl orz” +y° <a“,
M, y) { (7)r for a? < 22 + 92 < b%. (2.103)

We can solve Eq. (2.102) most easily using polar coordinates. By symmetry, neither A nor g depends
on 0, so Eq. (2.102) becomes:

——r— = —47h . (2.104)

Equation (2.104) is easily integrated twice, using Eq. (2.103) for h. We note that dg/dr vanishes
at r = 0, which fixes the first arbitrary constant. We require that ¢ vanish at » = b, which fixes
the remaining arbitrary constant. The result is, in rectangular coordinates:

1—1—2]ng—w2aL2y2 if 22 +4? < a?,

2.105
lnpif—yg ifa? <z?24+9y2<b?. ( )

g(z,y) = {

The radius a (also b) may be a slowly varying function of s and perhaps also of ¢. For a different but
still circularly symmetric distribution h(z,y), the result would not be much different. For example,
for the parabolic distribution

2 (1 _ z24y? 2 2 2
h(a:,y)={ o (1-555) fora? 4y <a?,

0 for a® < 22 + 42 < b?,
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we get

3 b 2(2%+y?) | (@ y?)? e o 2 2
£42In2 — f <
9(z,y) = { ; * o O ff ’ :yQ = < (2.107)
n PR o <z°+y* < .
Some other cases are treated in the literature; see Refs. [1, 2, 9].
The canonical potentials for space charge fields are
(1—F)A
= - 477 2.108
5 BA 1
= 1 . 2.1
Strege L TP 29l y) (2.109)

As written in Eqgs.(2.108),(2.109) the potentials ¢ and A depend explicitly only on the variables
z and y. However, the charge density A and perhaps also g(z,y) will generally depend also on s
and t. In a beam traveling with a velocity ¢, the charge density will be approximately A(s — Gct),
if we neglect the slow changes in density in the beam frame of reference.

3 TRANSVERSE MOTION

We start with Eq. (1.11) and delete the electric potential ¢ to obtain the Hamiltonian for transverse
motion:

N[=

HsTl(xazﬁaya&; S) = _eAS - (1 + p_lx) [p2 - (& - 6A$)2 _py2] ’ (31)

1
E? —m22

where the kinetic momentum is

c

and we are using a gauge in which 4, = 0. We have underlined the momenta, because we want to
rescale them.

For each particle and for pure transverse motion, the kinetic momentum p is a constant param-
eter. It is convenient to rescale the canonical momenta to be 1/p (not 1/pg ) times their values in
Eq. (3.1):

Pz =Pa/P, Py =Py/P - (3.3)
This makes the kinetic part of these momenta equal to the slopes dz/ds,dy/ds. The reader may
verify that this requires also rescaling the Hamiltonian by 1/p:

Hyr(z,pz,y,py38) = Hsri/p

2 2
= —e?s —(1+p 'z) ll — (px - eAw) —Pf/] : (3-4)

3.1 Space-Charge Terms

The space-charge terms include the electric potential (2.108), which can be included here in the
following way. The space-charge force on a particle is given in terms of the space-charge fields by

F = eE4+evxB

= —eV¢— eag:m

+ecfs x (V X Aem) (3.5)
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where we neglect the transverse components of the velocity, which would make only a very small
correction to the space-charge force. According to Eq. (2.109), the space-charge vector potential
has only an s component (Aem = §4ems). The vector potential part of the space-charge force is
therefore:

Aem Aem . .
—668; +ecfsx (VX Aem) = —e§a Bet * +ecBs x (VAems X 8)
AaAems AaAems
= — A — . .
ed— + ecBV Aems — ec3 95 (3.6)
If we neglect transverse velocity components,
0Aems O0Aems ds 0Aems

= Dl 3.7
ot os dt U os (3.7)

where (¢ is the velocity of whatever wave disturbance on the beam is producing 0Aems/0t. If we
approximate f3,, by 3, then two terms in Eq. (3.6) cancel out, leaving

_ A
ot

+ecfs x (V X Aem) = +ecfV Aems - (3.8)

We substitute in Eq. (3.5):
F = —eV(¢ — BcAems) = eBcV Aemses » (3.9)

where we have used Eqs. (2.108) and (2.109) and set

1 A
Aemscs = - (? - f) 4’/T€()Cﬁg($’y) . (310)

By comparing this result with Eq. (3.8), we see the space-charge force can be included in the
Hamiltonian (3.4) by including in A, the canonical potential

1 A
ASCS - _(1 * p_laj) <? a f) 47T€OC/89($,y) ’ (311)

which is not the true space-charge canonical potential, but which gives the correct space-charge
force including the ¢ term, under the conditions for the validity of Egs. (2.108), (2.109), and (3.8).
3.2 Fourth-Order Terms

The expansion of Eq. (3.4) to fourth order in z,y, py, py is, if we use the formulas for A derived in
section 2:

1 1 T Do 1 eA ",
B = Laalgoo(iom) | 5 ey
2 2 P p kre—2 P
€Az 9 n z(pf +p})
Y Pz 2
2 42
e“A eA 21 eA 02 eA 12 eA 03 1

+ 32602 y4 - —= l'Q?me - (_;c + —w) 1'92 . — — yspm + —(pi +pg21)2

2p pp P 8

C

+Cse(x? +y?) + %(x?’ + zy?) , (3.12)
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where pg is the momentum of the reference particle given by Eq. (1.1), the coefficients Az and
Ay are the coefficients multiplying z¥y¢ in the appropriate terms of Eqgs. (2.30), (2.48), (2.58),

(2.62), (2.70), and (2.73), and
1 ex
Cie = (? - f> pre (3.13)

is the coefficient of the space-charge terms, if we use Eq. (2.105). Terms independent of the
coordinates have been dropped from Eq. (3.12).

4 LONGITUDINAL MOTION

In this section, we obtain the one-dimensional Hamiltonian for longitudinal motion, to lowest order
in the energy deviation, in several convenient forms. We derive the Hamiltonian by writing down
the equations of motion and writing the Hamiltonian by inspection. Our treatment follows in part
that of Reference [1]. We first treat the case where the rf frequency wys is constant, applicable
particularly to a linac or storage ring. We next allow w;f to depend on the time, as in a circular
accelerator.

Section 5 contains the derivation of the complete Hamiltonian for nonlinear coupled horizon-
tal and longitudinal motion, starting from the original Hamiltonian (1.11) and making successive
canonical transformations to synchrotron, betatron variables.

4.1 Second-Order Hamiltonian with Constant Radio Frequency

We will specify the accelerating gap(s) as in Eq. (2.74) by the functions A(s) and V'(¢), which we
take to be:

A(s) = Zé(s—sy'), (4.1)
V(t) = Vsinwgt, (4.2)

where we will assume in this subsection that w,s is constant. This is appropriate for a linac, where
wyr 18 at least piecewise constant, and for a storage ring. We may neglect the time variation of wys
in a circular accelerator for short times, for example to draw bucket diagrams and obtain bucket
parameters. The voltage V may depend on j or, equivalently, on s.

The gap positions are separated by distances L:

L=sj1—58j. (4.3)

For a circular accelerator with one gap, the gaps are located at s; = sgqp + 27j R, where L = 27R
is the length of the reference orbit. For a linac, L may be a slowly varying function of j or s. Cases
in which a circular accelerator has several gaps, or in which a linac has a more complicated gap
structure than we have assumed, can be handled in a straightforward way by the methods we will
use (both here and in section 5). Treating the general case is not worth the extra complication it
would introduce into this report.

Synchrotron Variables. We define the synchronous energy as the energy corresponding to the
reference orbit:
E; = [p2c® + m204]1/2 , (4.4)

19



where py is the momentum corresponding to the reference orbit. We assume the accelerator is
designed so that there is a synchronous particle whose energy is the synchronous energy except
that it gains energy in discrete increments each time it crosses a gap. It arrives at a gap at a time
ts and phase

wils = s + 21l , —T < s <. (4.5)

We include the term with the integer £; in order to allow the synchronous phase /varphis to be
constant or at most slowly varying. The energy of the synchronous particle satisfies the equation

of motion iE
dss = A(s)eV sin s . (4.6)
This is on average .
dFE eV sin @,
= ) 4.7
< ds >av L ( )

We will neglect the slow variation (if any) of the synchronous phase.
A non-synchronous particle arrives at the gap at a phase

wiit = @ + 2ml; . (4.8)
Its energy deviation is
w=F—FE. (4.9)
We will derive a Hamiltonian for the variables ¢, w with independent variable s.
We first note that because the Poisson bracket
dp Ow Op Ow
w)-r = 5 5 F) ~ 3(-E) o
is constant, the transformation from ¢,—F to ¢, w is canonical with scale factor —w.s, and the
variables ¢, w are canonical. In particular,

= —Wyf (4.10)

dpdw = wdtdE (4.11)

and because Liouville’s theorem holds in the ¢, E plane, it will hold also in the ¢, w plane.

The Hamiltonian. A particle gains energy 1% sin ¢ when it crosses a gap. Its energy equation of

motion is therefore:
dw

Fi A(s)eV (sinp — singy) . (4.12)
S
The time for the synchronous particle to travel between gaps is
L
=—. 4.13
- (413
For an off-momentum particle, we will define the parameter 1 by writing to first order
A A
27 _ 2P (4.14)
T p

The change of phase, relative to the synchronous particle whose phase is not changing, is

Ap = wyAT
Ap
= wyTn—

p

WrE THW
mc232y
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The phase equation of motion is therefore

do Ap B
where werl
= r 4.1
c¢3E,’ (4.17)

and we have used Eq. (4.13). Because Egs. (4.16) and (4.12) give dp/ds in terms of w, and dw/ds
in terms of ¢, it is easy to write the corresponding Hamiltonian:

1 N
H,r(p,w;s) = §Kw2 + A(s)eV (cosp + psinps) . (4.18)

From Eq. (4.13) we have, for a linac:
ar A

T B
1 A(By)
v? By
- _lar (4.19)

¥ p

n=—— . (4.20)

Here vy refers to the synchronous energy, so 7 is a function of s. For a circular accelerator, L along
the equilibrium orbit is a function of p, and

At AL AB

_aL _Aab 4.21
T L 8 ( )
Now define the transition energy y;mc? by
AL _14p (4.22)
L p

where AL is the change in L for an off-momentum particle. Then for a circular accelerator,

n=———. (4.23)
Difference Equations of Motion. We note that the equations of motion (4.16) and (4.12),

which follow from the Hamiltonian (4.18), imply the difference equations:

i+ = @+ (541 — s5)Kwj , (4.24)
wjr1 = wj; +eV(sinp; —sing;) , 4.25)

where ¢;,w; are the values of the variables just after crossing the gap at s;.
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Smoothed Hamiltonian. If V and the distance L between gaps are slowly varying functions of
s, we may approximate the Hamiltonian (4.18) by replacing A(s) by its average value:

1 eV . 1
Hs(p,w;s) = 5 Kw? + —(cos ¢ + @sin p5) — (_2 - f)

EWrfgo
A .
5 7 S ()

ye—r (4.26)

The equations of motion resulting from this Hamiltonian do not have any periodically fluctuating
coefficient. This feature may be particularly useful in long time simulations, because the s step
may now be taken as long as the rate of change of the variables allows.

We have added a space-charge term where A\(yp) is the charge per unit length at the point in
the beam with phase ¢, and

b
g0 =9(0,0) =1+2In = (4.27)

where in the last member, we used Eq. (2.105). The derivation is as follows. According to Egs. (3.9)
and (3.10) the longitudinal force on a particle due to space charge is

_ (1) eglz,y) OA
F= ('y? f) ey Os '’ (4.28)

where we have neglected any dependence of g(z,y) on s. Along the beam, our definitions give

wrrds
dp = ——" . 4.29
@ Be (4.29)
If we write A as a function of the coordinate ¢, which locates a point on the beam, then we have
for the space-charge force on a beam particle

d_w _F — < 1 ) ewrfg(x,y)@
e dmegfe Do

2 (4.30)

ds
If we replace g(z,y) by its value at the beam center, then the space-charge force is correctly given by
the term we have added to the Hamiltonian (4.26). It would probably be more accurate to replace
g(z,y) by its value averaged over the beam cross section. If we do that for a uniform circular
beam cross section, the value (4.27) is reduced by a factor 1/2. For a parabolic distribution, the
value (4.27) would be reduced by a factor 11/12.
If we use the approximation ds = Bcdt, we can take time as the independent variable and write
the smoothed Hamiltonian as

1 efBcV . 1 ewr
Hus(pwit) = 5 feKu? + L (cos o + psinp,) - (32— 1) S0 (4.31)

¥ 4dmeg

For an electron ring, one can include radiation damping by increasing ¢, above that given by
Eq. (4.7) so that the gap provides the extra energy lost per turn by radiation. (See the more careful
discussion of this point in section 5.) Radiation loss itself is not described by a Hamiltonian, but
here we can bury the loss rate in ;.

4.2 Exact Canonical Variables for Time Varying Radio Frequency

In a circular accelerator, the radio frequency is a slowly varying function of the time. The variables
¢ and w are then not exactly canonical. If we want Liouville’s theorem to hold over long periods
of time, for example to study “adiabatic damping”, then we need to use variables that are exactly
canonical.
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The original longitudinal variables ¢ and —F are exactly canonical. We can construct exactly
canonical longitudinal variables as follows. We first take the variation of w.s into account in the
definition of ¢ by replacing Egs. (4.5) and (4.8) by

ts
/ wie(t)dt = ps + 21l , —T <@y <7, (4.32)
0
t
/ wri()dt = o + 20, . (4.33)
0
We fix up the Poisson bracket by including wys in the energy variable:
E—-FE
W = Z. (4.34)
Wrf
The Poisson bracket is now
op OW dp oW

Wh—-g=— - =-1. 4.35
W) = 5 5CE) ~ 3(F) ot (4.35)
The transformation is now canonical with scale factor —1. The phase area element dpdW is
constant, and Liouville’s theorem holds exactly.

In terms of the new variables, the equations of motion (4.16) and (4.12) become:

de
— wi KW | 4.
L — oKW (4.36)
aw eV . :
E = A(s)w—rf(SIH(p — Sln(ps) . (437)

In these equations, wyf is a slowly varying function of ¢. In principle, we should solve Eq. (4.33) for
t as a function of ¢, and substitute in w;. Instead, we will replace ¢ by ¢5(s), the time at which the
synchronous particle reaches the point s, so that w.s becomes a function of s. The same remarks
apply to the voltage amplitude V whose slow time variation we also neglect. The Hamiltonian is
then easily written:

A~

1 V.
Hyr (o, W;s) = —EwrszI/V2 — A(s)z % (cos p + psin ) , (4.38)
rfs

where we have written wyss to indicate that this is the frequency at the synchronous time ¢s(s).
Neglect of the difference between wys(t) and wys(ts(s)) means that the equations of motion derived
from the Hamiltonian (4.38) may not be exact, although the variables defined by Egs. (4.33)
and (4.34) are exactly canonical.

In the next section, we will derive the Hamiltonian for coupled synchrotron and betatron mo-
tion by a series of canonical transformations from the original variables. This procedure will also
provide a more rigorous derivation of the results of this section. We will obtain the synchrotron
variables (4.33) and (4.34), except that we will need to change the sign of ¢, because the scale
factor must be +1 when = and p, are to be included in the transformation. We will take slow time
variations of wys and V into account to first order, and we will expand the Hamiltonian to fourth
order in W.

In order to be able to study synchrotron motion near the transition energy where K vanishes,
it will be convenient to add to Eq. (4.38) the third-order term from Eq. (5.68):

A~

eVs

1
HsL((pa W; 3) = §wrszW2 - K3W3 + A(S) (COS Y+ (,DSiIl (Ps) ) (439)

Wrfs
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where the coefficient K3 is given by Eq. (5.70).
The corresponding difference equations are

wjir1 = @+ (sj+1 — 85) (W KW; — 3K3Wj2) , (4.40)
eV . .
Wj+1 = W] + w—f(sm @Yj+1 —SIn QDS) . (441)
iy

The smooth Hamiltonians corresponding to Egs. (4.26) and (4.31) are:

A~

1 ev, )
Hyrs(p,Wis) = ﬁwrszW2 — (K3, W3 + m&:osgo + psin p;)
1 €90
= A 4.42
(72 ! ) Tneofc P (4.42)
1 2 3 eVs .
Hirs(p, W;s) = iﬂcwrszW — Be(Ks3),, W° + ﬁ(cosgo + @singy)
1 ego
= A 4.4
(1) 250, (1.43)

where we have set L = 27 R because these equations apply to circular accelerators, and have used
Eq. (5.18).

5 SYNCHROBETATRON COUPLING

In this section we will follow the method of treatment used by Suzuki [10]. The particular case we
treat and the approximations we make differ from those of Suzuki.

5.1 Coupling Hamiltonian in Original Variables

In studying synchrobetatron coupling, we will use s as the independent variable. We could also use
t, but there are advantages in using s, particularly in handling the rf gaps. In order to study motion
near the transition energy, we will need to keep at least third-order terms in the energy difference.
In order to study synchrotron sidebands near the nonlinear betatron resonances, we need nonlinear
terms in the betatron variables. We will keep up to fourth-order terms in the energy difference and
the betatron variables.

Proper handling of the slowly varying rf voltage and magnetic fields is a tricky matter, particu-
larly since they are given to us as functions of ¢, which is a dynamical variable. We want the slowly
varying quantities to be functions of the independent variable s. We therefore expand them about
the synchronous time ¢; to first order in ¢t — t5, that is, we will keep only terms involving the first
time derivatives. Because % = ‘fi—f [see Eq. (5.21) below], the time derivative py is of the order of
(or smaller than) the synchrotron variables. We will take all time derivatives to be of the order
of the betatron and synchrotron variables in determining which terms to keep in the derivation.
To simplify the algebra, we will assume that all magnetic fields (B, @, S, O) have the same slow
time dependence. We will take them all to be proportional to py(t), which is proportional to B(t)
according to Eq. (1.1). There are then usually only two independent time dependences, that of pg
and that of the rf voltage amplitude. The design radio frequency wy¢(t) can be expressed in terms of
the synchronous momentum [Eq. (5.76)]. However, if there are rf errors, or if we manipulate wy(t)
in order to move the beam around in the vacuum chamber, as in beam stacking, then Eq. (5.76)
no longer holds exactly. We will therefore keep separate the time derivatives of wyt(¢) and pg. For
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completeness, since we are doing all this algebra anyway, we will also include radiation loss, which
may be important in electron accelerators.

To handle these matters, we will start from the exact Hamiltonian (1.11), with y motion omit-
ted, and derive the Hamiltonian for synchrobetatron coupling by a sequence of canonical trans-
formations, without making any approximations except for the expansions to fourth order in the
dynamical variables and the time derivatives of slowly varying quantities.

The Hamiltonian (1.11) with the y motion omitted is

1/2
; (5.1)

2

Hs(iapwata _Ea S) = _eAS -p (1 + %> ll — p_iz
- p p

where we use z for the horizontal distance measured from the reference orbit. We assume bends
with edges perpendicular to the reference orbit (&« = 0) and expand up to fourth order in the
betatron variables:

t
Hopot,~Fis) = —p+eA(s) [ Vit
_ 0

— 1 1
PP,y —pa” + =kpoz® + Hyipo , (5.2)
p 2p 2
where the first line contains only longitudinal variables, and the second line contains the transverse
variables and p, which depends on E [see Eq. (3.2)]. The parameter k is given by
1
k(s) = — — Q . (5.3)
po
Because the field gradient @) increases in proportion to pg, k(s) is independent of time.
Nonlinear terms in the betatron equations of motion are given by cubic and quartic terms in
the Hamiltonian:
eS 3 1 5 eQ"+12e0 , 1
B —

H = — — — . 5.4
NLBO = & + 210[)&& 13 + 8p3& (5.4)

5.2 Transformation to Synchronous Coordinates

A particle on the reference orbit (z = 0,p, = 0) must have p = py. We define the reference energy

Eo(t) = [ppc® +m’c']'/?, (5.5)
and the reference velocity
=2 = 1] (5:5)
° Ey )

We define a synchronous particle that follows the reference orbit and whose time variable t,(s)

must satisfy
dt, _ _OHs _ Op _ Eolts) _ 1 (5.7)
ds OE OE po(ts)c2  Polts)c '
The solution of this equation allows us to write the energy of the synchronous particle as a function
of s:

Ey(s) = Eo(t = t4(s)) . (5.8)
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We will use the subscript s to denote slowly varying quantities evaluated at time ¢ = ¢4(s). The ref-
erence momentum py is defined by Eq. (1.1) as a slowly varying function of ¢ through its dependence
on the bend field B(t). We expand it to lowest order in its time derivative:

po(t) = ps + ps(t —ts) , (5.9)

where p; = po(t = t5) is the synchronous momentum, and ps = po(t = ts).
We take for the voltage across the accelerating gap:

V() = V(#) sin /0 s (1)t (5.10)

where the gap voltage V(t) and the rf frequency wye(t) are slowly varying functions of ¢. We can
evaluate the integral in the second term on the right in Eq. (5.2) by parts, keeping only lowest
order terms in the time variation of slowly varying quantities:

A~

t t . 174 ¢
/ V(t)ydt = — 4 cos/ wrf(t)dt—l—Msin/ wye(t)dt
0 Wy f 0 Wyt 0
) t
= 5% cos/ wyt(t)dt
Wrfs 0
V. — eV t t
JrtaVs — OtV (sin / wnt (£)dt — wity (£ — £4) cos / wrf(t)dt> . (5.11)
Wreg 0 0

The first line can be verified by direct differentiation of the right member. The second line comes
from expanding the time dependence in the first term. We take for the gap function a periodic
delta function:

= Z (s — Sgap — 275 R) . (5.12)

Let us now consider the Hamiltonian for pure synchrotron motion, represented by the first line
of Eq. (5.2):

¢
Hyi(t,—B;s) = —p + eA(s) / V(t)dt . (5.13)
0
We introduce new canonical variables
$ = / dt+ ngap)’ (5.14)
= 5.15
W Wrf ’ ( )
via the generating function
t his —
SU(tWis) = —W [/ wrf(t)dt—w _By(t—t,) + zpe | (5.16)
0 Pz
051 051 051 051
E = —(— = — 5.17
ot €T ow F T op, 2T 0g (5.17)

where the last term in Eq. (5.16) produces the identity transformation on the transverse variables.
The second term in ¢ [Eq. (5.14)] is added to make ¢ a slowly varying function of s. The harmonic
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number h is the number of oscillations of the rf voltage during one revolution of the synchronous
particle so, at least approximately:

Wi = h% . (5.18)

For a particle at the gap (s = Sgap + 27jR), the second term in ¢ is 27jh. Because the integral in
Eq. (5.14) appears in the Hamiltonian as the argument of a trigonometric function that is multiplied
by A(s), and A(s) is a periodic delta-function, we may replace the integral by —¢:

A(s)sin /0 ()t = —A(s) sing , As) cos /0 ()t = A(s) cos g . (5.19)

Note that the sign of ¢ here is opposite to that in the previous section, so that it decreases as the
rf phase increases. This is necessary in order to keep the transformation (5.14), (5.15) canonical,
including the betatron variables. We could have chosen instead to change the sign of W, but that
seems less natural. In fact, ¢ now increases in the same direction as s, i.e., in the direction in which
the beam is traveling [see Eq. (4.29)].

We define the (slowly varying) synchronous phase ¢, by requiring that E; satisfy the equation
of motion given by the Hamiltonian (5.13), with A(s) replaced by its average value, because Ej is
slowly varying:

dE;, 0Hg eV

I 5%~ 9rRm sinps , —T < @s <, (5.20)

where we choose the value of ¢ corresponding to the stable fixed point. Note that E; defined this
way is not a solution of the exact equation of motion. We have smoothed out its small periodic s
dependence, so E is not quite the energy of the synchronous particle. We may nevertheless use E
and ts as references from which to measure energy and time deviations in the following canonical
transformation. This is a different choice from that in Section 4, where we used the solution FE;
of the exact equation of motion as the reference. The two differ by a small periodic term. The
choice is largely a matter of taste. The present choice has the advantage that the reference energy
is slowly varying and is defined by Eq. (5.5), whereas the former choice required us to solve the
equation of motion for E(s). We note that

dFE,
ds ’

Ps = (5.21)
either by direct calculation or by noting that both sides of this equation are equal to the force in
the s direction.

We can include radiation energy loss by adding it to the left side of Eq. (5.20):

dE, T eV, .
__ _ < 22
ds 2R 2aRSMPsy TTSPsST, (5-22)

where T' is the radiation loss per turn. Radiation effects cannot generally be included in the
Hamiltonian for single particle motion, but in this case, where the radiation loss is a known quantity,
we can include it as above, increasing sin @, to cover radiation energy loss. Equation (5.22) requires
us to add to the Hamiltonian (5.13) the term

Hrad — —ﬁ(t - ts) ) (523)

where we have added a term independent of the variables in order to be able to use Eq. (5.27)
below.
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We assume that wyt(t) is chosen so that Eq. (5.14) also gives the synchronous phase defined by
Eq. (5.22):

ts _
Ps = — /O wet (t)dt + Mo~ o) ngap) : (5.24)

If we differentiate this equation with respect to s, we get

d‘ps o wrf(ts)
= iR (5.25)

Because t; is a function of s, this defines in principle wys as a function of its argument. Because
@s is slowly varying and never gets outside the range —m < s < m, Eq. (5.25) shows that ws is
given to a good approximation by Eq. (5.18), which holds exactly on average over a long period.
We will use Eq. (5.18) for wy in evaluating coefficients like those in Egs. (5.36)-(5.39) below.
We will use the value of wy(t) given by Eq. (5.24) or (5.25) in the transformations to follow. If
wrf(t) differs from this value, either because of errors in the rf hardware or because we use rf
manipulations to move the beam off the reference orbit, then the difference would have to be added
to the integrand in Eq. (5.10) and carried along as an extra term, though it would not be used in
defining the transformations. We will not do this here, as it is not usually of interest in studying
synchrobetatron coupling.
We will need the time difference ¢ — 5, which we get as follows:

¢
p—ps = _/t wye(t)dt
it
= —/ wit(ts + 7)dT
0

t—ts
= —(t —ts)wpes — /0 TweedT

=t — ts)wers — %(t — )2, (5.26)

We solve by successive approximations:

P = Ps d)rfs(f - @5)2
t—t, = — - .

Wrfs 2w§f5

(5.27)

Note that the next term in Eq. (5.27) would be fifth order.
As an application, we treat the time dependence of the quadrupole, sextupole and octupole
coefficients, which change in proportion to po(t). We use Egs. (5.9) and (5.27) to get for Q(t):

QM) = Lipy+5ut— 1) = Qu(o) [1- 20— )] . (5.28)
bo WrfsPs
where we use the fact that Q(¢)/po(t) is constant and keep only first-order terms in the time
derivatives. Similar formulas could be written for the other multipole coefficients S and O. Because
the correction in square brackets in the right member of Eq. (5.28) is second order, it is only relevant
for the terms quadratic in z in the Hamiltonian. Hence in the nonlinear terms (order z* and higher),
we may simply replace @, S, O by Qs, Ss, Os.
We need a few formulas in preparation for carrying out the transformation (5.14),(5.15). The
kinetic momentum p may be expanded to fourth order in W:

1 1 1
p=ps +tpwW + §p2WW2 + EP3WW3 — ﬂp4WW4 , (5.29)
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where

Pw = Wit g—g)s ) (5.30)
pw = Wi %)s , (5.31)
psw = wi %) o (5.32)
paw = —wi %)s . (5.33)

Because wyt is a slowly varying function of ¢, we expand it:

: wrts (@ — @s)
wrf(t) = Wrfs + Wrfs (t - ts) = Wrfs — aLLLAS SR A s (534)
Wrfs
where we have used Eq. (5.27). Because the term in w;, is second order, Eq. (5.29) can now be

written as a function of s and W to fourth order:

1 1 1 w
p=ps+ W = opoW?+ epsW? — Zopa W — wrzfs (o — @s) (W — p2aW?) | (5.35)
rfs
where
8]) wrts By Wrfs h
— et = = = 5.36
) = wngg)  =tRp oSl (5.36)
82p w m? p? B2
pa(s) = —w? = -5 = = , (5.37)
" OR? ) ., PE p? Rpy
0p 3m2wd E 3h3
— 3 — rfs ™5 __
p3(5) = Wrfs aEg) . pgcz R3p§’)’§ ) (538)
pa(s) = —uh o'p _ 4 15mct + 12m?2c?p? _ R4(3 4+ 1272) (5.39)
4 rfs 8E4 . rfs pZC4 R4p§”y§l . .
We also need X
1 1
== Py (P2 Pl g (5.40)
P Ps P 2ps  Ps
where to second order we need no time-dependent corrections.
The Hamiltonian Hy, after transforming to the variables ¢, W is:
oS
HS?(fa w; 3) = Hga+ 8—81
1 eV E! r
= —pW? - A S (p— = (p-
2p2 Wrfs (S) cose * Wrfs (f (pS) * 2 Rwyps (p5)
+Hyps + Hsys
1 eV eV, sin ¢
= low?_ %A _ EVsSiNps,
2p2 Wrfs (5) cosy 2T Rwyts 805)
+Hnrs + Hsys , (5.41)
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where we have used Eq. (5.22), and

Hnps = —%W?’ + g—jW‘1 : (5.42)
Wrt eV, sin @ Wrf
Hgys = —W(g — )’ + w%:(g — 5) (MW — paW?)
ILs Irts
e(w V — sV . w
(ot w3 = )A(S) —sinp + (¢ — ;) cos p + 2;25 (o — ©s)? cos | (5.43)

rfs rfs

contain the nonlinear terms and the low order time dependence of the slowly varying quantities.
Terms that do not contain the canonical variables may be omitted. Note that the linear terms in
W drop out of the Hamiltonian Hgy, as do the linear terms in ¢ — ¢, if we replace A(s) by its
average value, because Fj, @ satisfy the corresponding equation_s of motion. Note also that the
radiation coefficient I' drops out of the Hamiltonian; it appears only in the definition of sin ;.

We replace the first two terms of the Hamiltonian (5.2) by the right member of Eq. (5.41) and
make the substitutions (5.14),(5.15) in the remaining terms to obtain

1 1% eV, .
Hg3(z, pe, 0, Wis) = —poW? — A(s)cosp — psin g
2 rfs 277'I€ers
1
oW + —p,? + Shp® — p(p - p,)
p 2ps 2 PWrfs
+Hnrs + Hsys + Hyvg1 + Hyio (5.44)
Where S 1 Q" +12¢0 1
e e + 12e
H _ ©9s 3 2 _ s st ot 5.45
NLB1 6 z° + 2psp£& 8 z + BpE’& ) ( )
and
D2 2 J4! 2 kps 2 WrfsP1
H = ZgW* - =p, W — —— — W(p —
NLC 9% 2p§& 2wrf5£ (o —ws) + wffspz (o — vs)
2
p3 s 1 [pt P2 217172 y4! 2
— =W+ - | = + 5 — A
sz +2<p§’+2p§>&w 2§§&W (5.46)

contains nonlinear coupling terms. The last term in the second line of Eq. (5.44) is actually third
order according to our definitions. It has been placed in that line because it represents a linear
coupling between synchrotron and betatron motions. If we were to replace p; = E. by its value
from Eq. (5.22), (as we did in Egs. (5.41) and (5.43)), the radiation coefficient I" would appear
explicitly in the Hamiltonian. We will therefore leave this term as it is, because radiation does not
enter into the definition of p.

5.3 Transformation to Betatron Coordinates

If we ignore the slow dependences on ¢ and s, the linear betatron equations given by the Hamiltonian
(5.44) are

dr pz dpry p
— ==, ==—=W - . 4
ds ps  ds p hpsz (5.47)

These equations have the periodic solution

p1
Zeq = DEW, Pagg =1 D)W, (5.48)
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for the off-momentum equilibrium orbit in linear approximation, where the dispersion function
D(s) is the periodic solution of

d’D 1
— + kD =—. 5.49
2 T P (5.49)
We now transform to betatron coordinates:
D
r=2—-PZW, py=ps - pi D'W, (5.50)
Ps —
via the generating function
D 2pD!
So(z,pz, 0, W;8) = pez — p;—pr +p1D'zW + oW — I)ITWQ , (5.51)
S S
which gives for the new synchrotron variables
a8
W o= 2Z2=w, (5.52)
dp
0853 p1D /
= =L _p— D'z . 5.53
® aw e P +p1 D'z (5.53)
The new Hamiltonian is
oS
HSBC('T,pxa ®, W; S) = Hs3 + 8—32
2 /1 D 1% D
- P (_2 — —) w2 £ A(s) cos (<p+ n Da —plD'x>
2ps Vs P Wrfg Ds
CVS p1D ' ) . 1 2 1 2
— — oD — —k
27 Rwsts (‘P 2 Py —p1D ) sinpg + 2pspz + 2 DsT

+Hgs + Hps + Hes + Hgys + Hsa + Hps + Hos + Hgya , (5.54)

where some terms that do not contain any of the variables have been dropped, and the third- and
fourth-order terms, including slowly varying terms, are

3 N2 33
piD (D ) pip2D  p3  eSpiD 3
Hs Pty s -5t w2, 5.55
’ l 2p2 \p 2pp 6 6p3 (5.55)
eSs 3 1 2
Hps = ; 5.56
B3 6 z° + 2p5pxpz ( )
eSsp1D ps  eSypiD?  piD" 5  p1D'
Hes = ——z W+ |- W w
@ 2y * 2p - 2p? * 2pap ) © t pep e
P1 D 2 p%D' D 2
+—<——1>PW+ — —1)pW?, 5.57
2p2 \ p o p2 \p r (5.57)
) 2 3 !
Hovy = ———— |Za(p—¢5) = ——pW + —W(p—gp,) - = —W>
Dswrfs | P Ds P 2p5
e(witsV — GontsV/ . w
+ ( rfs - rfs )A(S)[— Sll’lf + (f o (,05) cos f] + rf;pl (f _ QOS)W
wrfs wrfs
. V .
— A R (o — ), (5.58)

3
4w Rwiy,
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Hey = |-
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2pip 24

pip2D? | piD?|

+ o— T 3 w=,
4p- 2p3

_eQy +12e0; 4 4 1

Ly
8 gl

Hpy, =

piD! D'
Hoy = <p3+ )xW?’— P ap2w + P pdw —

2p2p 2pp? 2p3 P

3P1D'2 P1 ( D ) 21172

+ +=(1=—)| W
4ps 4p3  2p} p)|"

3DI3 3DDI plD, p1p2D'> 5

=W

+ + +
2p? P} 2p?

e(QY +120,) )
o 24pd

epse(wrtsV — @ups
Hgyy = £ f;w fs )A(s)(g—ws)Qcosg
rfs

LLIP
2wrfs - s

Wr 2D
+ 2fs (o — @s) lzﬂmW + (I;lp —pg) WZ] .

2p1D 2p?
z% + i zW + = WQ]
b

Wrts P $

piDD?  ps (662'3' + 12605> piD* | piD"
ps 8

6psp

(5.59)
(5.60)

2 ]
1D
Tp W2

pip

(202p1 DLW + 3p,p? D*2*W? + 2p3 D32 W3) | (5.61)

(5.62)

We have kept the parameters pi,po,p3,ps in the coefficients in the above equations to make
it clear where they came from. For the convenience of the user, we will now rewrite them, using
the definitions (5.36)-(5.39). We will also split off periodic s dependences in the following way. If
we average the coefficient in the first term in Hggc over the periodic dependence on s and use

Eqgs. (5.36)-(5.39), the result is:

p (1 <D> )_p% (1 1)_ whn
20, \72 \p/a/ 205 \V2 A} 2(3cE,

where K is given by Eq. (4.17), 7 is given by Eq. (4.23) and

)t / av .

GGl

Kwys
5 (5.63)
(5.64)
(5.65)

We may split the second term in Hgpe into two terms by writing the accelerating gap function as

an average plus an oscillating part:

1
A(s)=—+A 5.66
() = 5 +Bols) (5.66)
where for a delta-function gap the oscillating part has the Fourier expansion:
=1 £(s — Sgap)
A = — —- &/ 5.67
o(s) L R c R ( )
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This allows us to separate the synchrotron terms in the Hamiltonian into terms with slowly varying
coefficients and terms with periodic coefficients, which are often negligible.
The final form of the Hamiltonian is:

A~

1 eV, . 1 1
Hspo(z,pg, 0, Wis) = —gwrszWQ - 27cher (cosp + psing;) + gpi + §kpsx2
S S

h? D) , eV,
— =) W - Ag(s) cos
2R2ps (p 0 Wrfs 0( ) b

s
KW 4 208
6 2psp

eQ" +12e0 , 1 4
LA H H 5.68
18 -+ 8p§’p$ + Hcoa + Hgyy ( )

zp2 + Hes + Hsys

+K W —

where

hD' hD
= p— — 5.69
[ p- Tt Rpspx, (5.69)
h3D? /D h3D h3 eSh3D3
K3 = sol ") T omas —ops 2t 3,3
2R°p; \ p 2R°psysp  2R°psys - 6R°pg
RA(3 + 12v2) h*D h*(1+242)D"? hK*DD"? hiD™
24R'p3y:  2R'p3yZp 4R4p3y? 2R*p3p = 8R*p}
e(Q" + 120)h* D*
48R*p} ’

(5.70)

(5.71)

and the slowly varying and nonlinear coupling terms are given by:

.. _ €hSD h? N eh?SD? N h2D" - hD' o
@ 2Rp, 2R%p,py2 ~ 2R%p2  2R%pyp Rpep 1"
h (D h2D' (D
D_\pewa P (_ _ 1) w2 5.72
ps |1 h2D hD DD,
H - _ - _ _ 4 _ _
Vs Wrfs [pw(g ) Rngpr * RpspW(£ 1) 2R3p?
ewrs‘;/_wrsf/ . d)r h
(wrr wffs f )A(s)[— sin + (f — (ps) COS _] + R(‘f;}fs (f — )W
u')rfsef/s sin g 9
—————(p — 5.73
47T.Rw§fs (£ (108) ’ ( )
h3 h3D12 h hQD/
Hoy = — + W3 — zp?W — ———axp,W?
<2R3p37§ﬂ 2R%p3p 2Rpip """ Rlpp
hD' h? h? D\ 3n2D7?| ,
w — =)+ S | AW
Tarpt T l4R2P§7§ 2R ( p) Ay | P
N h3D" N RD'(1+2v%) m3DD’ W
2RPp3 T 2Rp2  Ropip )
e(Q" +120) (2hD 4 3n2D? , o, 2n3D3 _ .
- . 74
o4 R W + Ry W Ry aW?e |, (5.74)
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for

A~

d)rfse(wrfsv - wrfsV)

Hgyy, = 5 A(s)(g—(,os)2 cos ¢
2(‘urfs

d)rfs h h2D h2 2

+ ©—s) | 5—zW + - w
22, %) lRp (Rstp R%py;
psk 9  2hD h?D?__,

— — w=| . 5.75
2wrts (f ()05) |fc + Rp, oW R2pg ( )

Note that the first line of the Hamiltonian (5.68) has the form of the uncoupled Hamiltonian
smooth synchrotron and linear betatron motion, if we replace ¢ by ¢. The second line contains

periodic synchrotron terms with period 27 R, which are often neglected. The slight differences from

Eq.

the

(4.18) are due to differences in the definitions of W and ¢, mostly required in order to keep
transformations canonical. The coupling and nonlinear terms come from quantities defined in

Egs. (5.69)-(5.75).

Whew!
We can relate wyes to ps in Egs. (5.73) and (5.75) when Eq. (5.18) is an adequate approximation:

—1/2
hpoc®>  he m2c?

= =1 5.76
““"T“RE, R 7 ’ (5.76)

2.3 2.2\ ~3/2 2 6, 2 4.

. hm=c’p; mec hm?c’ps  wigsmc Py
Wifs = —m—=— | 1+ —5 = 5 = 5 - (5.77)
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